

The Livinghouse Catalytic Approach to the Tandem Pauson-Khand Reaction. Entry into the Parent Ring Systems of Dicyclopenta[a,f]pentalene and Dicyclopenta[a,e]pentalene

Scott G. Van Ornum, Michelle M. Bruendl and James M. Cook*
Department of Chemistry, University of Wisconsin-Milwaukee
Milwaukee, WI 53201

Received 2 June 1998; revised 29 June 1998; accepted 30 June 1998

Abstract: The first photochemically-mediated catalytic tandem Pauson-Khand reaction has permitted the preparative scale synthesis of the parent ring systems **4** and **6** of dicyclopenta[a,f]pentalene **1** and dicyclopenta[a,e]pentalene **2**, respectively. © 1998 Elsevier Science Ltd. All rights reserved.

The intramolecular Pauson-Khand reaction¹ (IPKR) has become one of the most versatile methods for the construction of bicyclo[3.3.0]octen-ones. Many natural and nonnatural products contain this substructure in their molecular framework which permits rapid synthesis *via* the IPKR. Since the discovery of the Pauson-Khand reaction,² numerous protocols have been developed to facilitate the cyclization process in a more efficient and effective manner. The modified conditions of Schreiber,³ which employ N-methylmorpholine-N-oxide (NMO), have been used to effect the cyclization under mild conditions and are more stereoselective than previous methods. Several other mediators for the IPKR include silica gel,⁴ DMSO,⁵ and sonication.⁶ Furthermore, Livinghouse⁷ has recently reported an interesting photochemically-promoted IPKR. The advantages of this method are the ability to use a catalytic amount of Co₂(CO)₈ (i.e. 5-9 mol %) as well as ease of purification of the products which result.

Recently the synthesis of the functionalized ring systems of dicyclopenta[a,e]pentalene **1** and dicyclopenta[a,e]pentalene **2** via the tandem Pauson-Khand reaction were reported. Synthesis of the target 14π annulenes in these systems could provide important information in terms of bonding character, Hückel stabilization, aromaticity and resonance energy.

Gram quantities of the key intermediates 4 and 6 will be required to permit eventual conversion into annulenes 1 and 2. Under the conditions of the stoichiometric Pauson-Khand reaction, transformation $3\rightarrow 4$ was carried out on 3 gram scale; however, large amounts of $\text{Co}_2(\text{CO})_8$ (i.e. 13 g) and NMO were required and chromatography proved laborious (Scheme 1). Consequently, the photochemical catalytic IPKR was investigated for its applicability toward a tandem cyclization process. The constrained systems of diene-diynes 3

and 5 were ideal candidates for this process, wherein the alkene and alkyne units are in the eclipsed conformation which should facilitate tandem cyclization. When diene-diyne 3 (300 mg) was treated with 9 mol % of Co₂(CO)₈ followed by irradiation of the reaction mixture with a Q-Beam MAX MILLION lamp at 50-55°C,⁷ tetracycles 4a-c were isolated in 74% yield. This constitutes a 95% yield for each of the six bonds generated in this regiospecific process. Attempts to increase the scale of diene-diyne 3 while maintaining 9 mol % catalyst resulted in prolonged reaction times (>72 h). Consequently, for preparative purposes diene-diyne 3 was stirred with 1 equivalent of Co₂(CO)₈ on 6 gram scale and this was followed by irradiation to furnish the tetracyclic system 4 in 69% yield. All three isomers of 4 may be employed towards the synthesis of annulene 1. The photochemical conditions were applied in similar fashion to generate the tetracyclic system 6, as shown in Scheme 1. When diene-diyne 5 was treated with 20 mol % Co₂(CO)₈, followed by photochemically-mediated cyclization, tetracycle 6 was obtained in 90% yield.

Scheme 1

1 eq. Co₂(CO)₈
1,2-DME
Q-Beam
CO
(69%)

4a, H_a=H_b=
$$\beta$$
 (4.7)
4b, H_a= α , H_b= β (5.9)
4c, H_a=H_b= α (1)

1 eq. Co₂(CO)₈
1,2-DME
Q-Beam
CO
(90%)

6a, H_a=H_b= β (2)
6b, H_a= α , H_b= β (3)

In summary, the first photochemically-mediated tandem Pauson-Khand cyclization has permitted the synthesis of tetracyclics 4 and 6 in regiospecific fashion in 69% and 90% yield, respectively. This is much improved over the NMO procedure previously reported. Both tetracyclic systems contain the necessary functionality for further transformation into 14π annulenes 1 and 2, respectively.

References:

- 1. Schore, N. E. Org. React. John Wiley & Sons, Ed. Paquette, L. A. Academic Press, N.Y. 1991, 40, 1.
- 2. Khand, I. U.; Knox, G. R.; Pauson, P.L.; Watts, W. E. J. Chem. Soc., Chem. Commun. 1971, 36.
- 3. Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289.
- 4. Smit, W. A.; Gybin, A. S.; Shashkov, A. S.; Struchkov, Y. T.; Kuz'mina, L. G.; Mikaelin, G. S.; Caple, R.; Swanson, E. D. *Tetrahedron Lett.* **1986**, *27*, 1241.
- 5. Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S. Synlett 1991, 204.
- 6. Billington, D. C.; Helps, I. M.; Pauson, P. L.; Thomson, W.; Hillison, D. J. Organomet. Chem. 1988, 345, 233.
- 7. Pagenkopf, B. L.; Livinghouse, T. J. Am. Chem. Soc. 1996, 118, 2285.
- 8. (a) Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. 1996, 37, 7185. (b) Van Ornum, S. G.; Cook, J. M. Tetrahedron Lett. 1997, 38, 3657.